
Motion Planning for Manipulators in Dynamically Changing
Environments using Real-Time Mapping of Free Workspace

Mihai Pomârlan1 and Ioan A. Şucan 2

1Universitatea Politehnica Timisoara, facultatea ETC
2Willow Garage

Abstract—This paper introduces a method to efficiently com-
pute global motion plans for robotic manipulators in dynamically
changing environments. An offline computation step is used to
construct a sparse roadmap to approximate the configuration
space of the manipulator in an empty environment. When the
robot is running, a representation of the environment to keep
track of the robot’s free workspace is maintained as sensor
updates are received. The maintained representation of the free
workspace is used in conjunction with the data computed offline
to quickly compute good quality global motion plans.

Index Terms—robot motion planning, sparse roadmaps, dy-
namic environments

I. INTRODUCTION

Motion planning is the problem of finding a continuous path
from start to goal, under a specified set of constraints [1], [2].
Solving this problem has applications in robotics, but also in
other domains (e.g., graphics, computational biology [3]).

Different sets of constraints need to be used in the computa-
tion of motion plans depending on the system considered (e.g.,
robots moving at higher velocities likely consider dynamic
constraints, robots transporting objects may need to maintain
particular orientations for the objects). This paper considers
the case of manipulators operating in dynamically changing
environments. We wish to obtain collision free paths as quickly
as possible. We assume the manipulator can be controlled
such that motions specified as sequences of waypoints can
be followed. This is a reasonable assumption since most
manipulators allow this form of control, and making such
an assumption allows for planning in the configuration space
of the robot – computed motion plans are in fact sequences
of waypoints, each waypoint being a configuration of the
manipulator (sometimes referred to as “path planning” or
planning under geometric constraints [1], [2]).

The difficulty of the problem considered here lies in the
fact that operating in dynamically changing environments
potentially requires frequent re-computation of paths. For
example, when operating around humans, or even in industrial
contexts, the speed of reaction of the robot is very important.
In this work we do not consider the issue of safety explicitly
– we assume a safety maneuver is executed when appropriate
and a new motion planning request is made. Thus we focus

1mihai.pomirlan@etc.upt.ro
2isucan@willowgarage.com
This work was partially supported by the strategic grant POSDRU

107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the
European Social Fund Investing in People.

our work on computing this new plan as quickly as possible.
Furthermore, we attempt to produce shorter solutions directly
from the motion planner, without requiring subsequent path
shortening heuristics. Because manipulators are usually rela-
tively high-dimensional systems (typically 6 or 7 degrees of
freedom (DOF)), approaches based on deterministic search are
typically slow [4]. Sampling-based motion planners have been
shown to quickly compute motion plans for manipulators, but
even in the best scenarios, only a few motion plans can be
computed per second [4].

We develop a sampling-based method to keep track of the
free part of the robot’s workspace as new sensor data is
received and efficiently use this data, in conjunction with data
structures computed offline. The resulting approach is faster
than typical sampling-based planning algorithms by a factor
of two to three (and sometimes even higher).

This paper is organized as follows. We discuss some re-
lated work in Section II, and we describe our approach in
Section III. Experimental results are shown in Section IV.
Conclusions and future work are in Section V.

II. RELATED WORK

There are a number of approaches addressing the problem
of planning in dynamically changing environments. From a
control perspective, Haddadin et al. [5] show a method that
can avoid local collisions for a manipulator in real-time (at
0.5 kHz). This method is very fast, but it is not intended
for global motion planning. In the context of sampling-based
motion planning, the idea of replanning (e.g., [6], [7]) can
be used in the context of dynamically changing environments.
Between replanning steps (which compute only a short motion
plans) updates to the environment can be incorporated. Elastic
roadmaps [8] can also account for limited changes in the
environment.

In this work we use the idea of constructing an approx-
imation of the manipulator’s configuration space, which has
been also discussed in previous work. Zacharias et al. [9]
used a previously computed set of robot configurations in an
RRT [10] algorithm to produce paths that appear more human.
The idea of using an offline-computed roadmap to approximate
constraint manifolds has also been explored [11].

III. METHOD

In short, the proposed method consists of an offline step
and an online step. The offline step computes a roadmap [12]

approximating the configuration space of the manipulator,
assuming an empty environment. The online step answers
motion planning queries by efficiently using the roadmap
computed in the offline step and a continually maintained
representation of the free workspace.

A. Offline computation

The offline computation consists of constructing a roadmap
R = (V ,E) in the configuration space of the manipulator,
assuming an empty environment, but avoiding self-collisions.
Let V be the set of vertices making up the roadmap and E
be the edges in the roadmap. This step can use PRM [12] to
grow the roadmap, but to achieve a low memory footprint and
obtain good quality motion plans, we use sparse roadmaps [13]
constructed with the OMPL[14] SPARS2 package. Figure 1
shows the positions of the end effector, corresponding to each
vertex in the roadmap, as pink markers around the robot.

The graph is assumed undirected, as all movements of a
manipulator are reversible. For each edge we associate a cost
value, which is the cost a path must pay to use that edge.
This cost could depend on the distance between the incident
vertices, or on some other, problem specific metric like energy
consumption. Each vertex also has a cost value associated to
it, which is the cost a path must pay to go through that vertex.
All vertices start with cost 0.

Fig. 1. Roadmap vertices for one manipulator arm. The end effector positions
corresponding to the vertices are shown as purple markers.

B. Online computation

While the robot is running, we maintain a representation of
the workspace around the manipulator using a 3D sensor. In
our work we used a KinectTM sensor, but any source of point
cloud data could have been used. We use the Octomap[15]
library for maintaining an octree representation of the envi-
ronment.

Octomap stores a probability of occupancy for each cell the
environment. Cells below a specified threshold are considered
free and cells above a specified threshold are considered occu-
pied. It allows quick checks to see whether a particular point

is in an occupied cell or not. However, a full collision check
with a robot arm configuration is fairly expensive (around
one millisecond on the hardware we used), and certainly
impractical for a naive approach that would recheck the entire
roadmap at every planning request.

Therefore we decide to have the planner itself maintain a
representation of what it ”believes” to be occupied or free
space, and it will update this representation as required by the
problems it is given to solve. In this paper, we have the planner
update its internal representation of the free space only while
it solves planning queries, and it does so by adjusting vertex
costs based on how close they are to vertices discovered to
be invalid while checking candidate solutions. However, the
vertex costs can also be updated by a background thread that
periodically checks validity of random vertices based on new
octomap data, even when planning requests are not processed.
The details of the cost update process are detailed in the next
section.

C. Processing a motion planning request

The planner we use is inspired by LazyPRM on the sparse
roadmap. For completeness, we describe LazyPRM here, then
give a reason as to why by itself it is not enough to achieve the
speed-ups we want, and present a way to improve LazyPRM’s
performance.

When given a planning query- a pair of start and goal states-
LazyPRM adds temporary vertices to the roadmap and links
them to the closest k neighbors (we use a value of 40 here).
A shortest path algorithm produces a candidate path in the
roadmap. All vertices along the proposed path get checked
for validity, and then all the edges. If all vertices and edges
are free of collision, the path candidate is the solution.

Suppose the candidate path is not valid however. The first
invalid point found, be it a vertex or a point along an edge,
stops the validation process; the candidate path fails, the
offending edge or vertex is marked as unusable, and a new
graph search will be performed, seeking another path candidate
while avoiding unusable vertices or edges.

One can say LazyPRM starts working on a graph G,
obtained from the roadmap together with the start and goal
vertices, and first produces the shortest path inside this graph
linking start to goal. Should the path not be valid, it produces
a new graph G′, the result of removing the most recently
detected invalid part from G, and then finds the best path inside
this new graph etc.

One notices LazyPRM has a focus on optimizing path length
(with the optimization restricted to paths already available in
the graph). This creates a problem when speed is desired: the
second best path, usually, isn’t too different from the best path,
ie., it often passes through the same regions, or nearby. So
if one obstacle invalidates the best path, it is often the case
it invalidates the second path too. As a consequence, in trial
runs we found LazyPRM would try several short paths, before
eventually finding a feasible one.

Therefore we need a way to push LazyPRM away from
seeking the shortest path, and away from likely obstacles. After

finding an invalid roadmap element, but before attempting a
new graph search, all (usable) vertices in the roadmap, except
the temporary vertices start and goal, receive a cost bump,
which depends on the square of their distance to the invalid
point detected. Initially, the cost associated with each roadmap
vertex is 0; a cost bump will increment the cost of vertex x
by:

cb(x,p) =
q

1+
(
‖x−p‖

r

)2

where p is the point where a collision was detected, r is a
radius parameter, and q is a maximum penalty parameter.

The roadmap used here is sufficiently small (357 vertices)
and the square of distance sufficiently fast, so a cost bump
update takes a negligible amount of time compared to, for
example, a collision check. One could of course limit the
number of vertices updated using some data structure for
nearness queries.

Vertex cost bumps therefore function as a trade-off between
attempting short paths, and keeping clear of short paths that
have proven to fail. They can also function as a representation
of occupied space internal to the planner, as long as this
representation can be updated both ways: increase cost when
it appears a vertex may be close to an obstacle, decrease it
when it appears close to a free zone. Cost reduction would
be analogous to the cost bump: when a vertex is found valid,
its cost becomes 0, and the costs of its neighbors are reduced
depending on distance similar to the cost bump, where we
limit cost reduction to never make a vertex cost less than 0.

Since there is a difference in how node costs and usability
flags behave, they should be handled differently. A high
cost vertex may still be considered by the graph search,
whereas an unusable one will not be. So while we can keep
vertex costs from one planner run to another, as a persistent
representation of the environment, usability flags must be reset,
or else we risk losing more and more vertices and irreversibly
impoverishing the roadmap.

Conditions for cost bump or reduction are straightforward
to track while answering a planning query (a vertex or edge
fails a check for a cost bump; a valid check result causes
cost reduction). These conditions could also be tracked on
longer stretches of time, for example interleaved among sensor
update operations in a lower priority thread. This thread would
select random vertices from the roadmap, run validity checks
on them, and update costs of nearby vertices as necessary.
Vertex costs could also decay with time.

Here we employ two different simple strategies. One is to
reset all ’unusable’ flags and vertex costs once the planner
terminated its run (be that because a plan was found or
because of timeouts), so each planning run starts from the
same initial vertex costs. The other is to also have a ‘cost
unbump’ function: when a vertex is found to be valid, it and its
neighbors have their costs reduced. The cost reduction function
has a similar shape to the cost bump, but cannot get the cost
of a vertex below 0.

Algorithm 1 LPRM with cost bumps (G, qstart , qgoal)

startNear ← NearestNeighbors(G,qstart ,r)
goalNear ← NearestNeighbors(G,qgoal ,r)
for q ∈ startNear do

addEdge(G,qstart ,q, |qstart −q|)
for q ∈ goalNear do

addEdge(G,q,qgoal , |qgoal−q|)
G′← G
while time remaining do

shortestPath ← computeShortestPath(qstart ,qgoal ,G′)
if pathIsValid(shortestPath,collisionState) then

return shortestPath
else

G′← G′−{collisionState}
for each q ∈ G′ do

q.cost← q.cost + cb(q,collisionState)
return no solution

IV. EXPERIMENTAL EVALUATION

We used The Open Motion Planning Library (OMPL)[14]
and MoveIt! [16] for the implementation.

For a first set of tests, we ran our planner and RRTConnect
on a set of planning queries and recorded execution times and
path lengths. The queries are planning problems requiring the
manipulator to move around a table (taking the end effector
from beneath the table to above it, for example) as well as
around objects on that table. Our planner was run for 30 times
for each problem. Every planner run started from zero vertex
costs, and the planner had to rediscover the environment.
Because its results show more variation, RRTConnect was run
100 times for each problem. Averages and standard deviations
of the results from these runs are available in tables I and II
for execution times and path lengths respectively. Box plots
are given in figures 3 and 4.

Fig. 2. Robot planning environment

As the table and plots reveal, the proposed planner is

Fig. 3. Boxplots: planning times

Fig. 4. Boxplots: path lengths

TABLE I
AVERAGE AND STANDARD DEVIATION FOR EXECUTION TIMES

RRTConnect New method
Problem Avg time(s) StD time(s) Avg time(s) StD time(s)

0 0.102 0.057 0.065 0.003
1 0.075 0.053 0.024 0.002
2 0.292 0.309 0.054 0.003
3 0.331 0.270 0.128 0.003
4 0.201 0.143 0.136 0.002

TABLE II
AVERAGE AND STANDARD DEVIATION FOR PATH LENGTHS

RRTConnect New method
Problem Avg length StD length Avg length StD length

0 7.314 2.895 4.553 0.000
1 5.205 1.900 3.606 0.000
2 7.597 3.353 3.826 0.000
3 8.626 3.238 5.224 0.000
4 9.976 3.068 9.420 0.000

capable of finding better quality paths faster than RRTConnect,
sometimes twice as fast or better. The performance of the
planner is dependent of course on the sparse roadmap used,
which should be small enough to enable fast queries, but large
enough to capture manipulator movements that would allow it
to move gracefully in a cluttered environment.

For a second set of tests, we keep the vertex cost values
from one planning problem to another. We run our planner 30
times for each problem, and each planner run starts from the
same initial vertex costs. However, the vertex costs at the end
of the last run for a problem will become the initial vertex
costs for all runs of the next planner problem. To compare,
we use RRTConnect, which we run for 100 times for each
problem. We again collect averages and standard deviations
of planning time and path length. Boxplots for planning time
are shown in figure 5; statistics for planning time and path
length are also shown in tables III and IV respectively.

TABLE III
AVERAGE AND STANDARD DEVIATION FOR EXECUTION TIMES

RRTConnect New method
Problem Avg time(s) StD time(s) Avg time(s) StD time(s)

0 0.174 0.072 0.082 0.001
1 0.242 0.200 0.097 0.002
2 0.157 0.075 0.127 0.001
3 0.165 0.079 0.252 0.012
4 0.173 0.080 0.142 0.003
5 0.209 0.198 0.054 0.002
6 0.197 0.183 0.136 0.002
7 0.181 0.078 0.103 0.002
8 0.163 0.069 0.083 0.002
9 0.097 0.092 0.048 0.002
10 0.207 0.169 0.158 0.001
11 0.284 0.180 0.158 0.002

TABLE IV
AVERAGE AND STANDARD DEVIATION FOR PATH LENGTHS

RRTConnect New method
Problem Avg length StD length Avg length StD length

0 10.644 2.563 6.861 0.000
1 7.910 3.321 6.552 0.000
2 10.253 2.524 7.959 0.000
3 10.461 2.244 10.008 0.000
4 10.984 2.808 10.008 0.000
5 6.361 2.887 2.938 0.000
6 7.250 3.731 3.525 0.000
7 11.350 2.564 9.796 0.000
8 10.876 2.505 5.725 0.000
9 5.599 2.375 4.212 0.000
10 6.977 2.534 9.977 0.000
11 10.406 3.342 7.777 0.000

Again we can see our planner is usually faster than the
RRTConnect average and median. One exception is problem
3. Problem 4 is the same start/goal state pair, and our planner
is now faster, because vertex costs help steer the planner away
from some dead ends. Also the environment changes between
problems 5 and 6, but our planner re-adapts costs quickly and
maintains its efficiency.

Fig. 5. Planning times with persistent costs

V. CONCLUSIONS

The proposed heuristic of adjusting vertex costs while
planning proved a promising way to obtain good quality plans
and fast planning times. Having a good precomputed roadmap
however is key; the roadmap needs to be small enough to
be quick to query, yet rich enough to capture enough variety
of behavior for the robot. It may be useful, as future work,
to investigate other procedures for roadmap generation, not
just sparse planners; for example, some other methods that
explicitly take into account the geometry of the configuration
space.

While the method presented here is often faster, it can
however fail to return a plan. This happens if enough obstacles
appear to disconnect the precomputed roadmap, and the start
and goal get connected to different components. It is possible
to detect when this happens, however, and in such a case, one
can employ another planner, like RRTConnect, as fallback.
Alternatively, one could run our planner and RRTConnect in
parallel, and return the first solution.

Presently the cost bump/unbump policy only affects ver-
tices. Edges passing near to an invalid vertex, but whose
endpoints are far away, are not affected. Also, often it is edges
that are found invalid. We used the first invalid point on an
edge as a dummy vertex to bump vertex costs around, however
no equivalent heuristic exists for cost unbump when an edge
is found valid in its entirety. Some adjustment to the heuristic
to better account for edges will be investigated.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, June 2005.

[2] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[3] J.-C. Latombe, “Motion planning: A journey of robots, molecules, digital
actors, and other artifacts,” Intl. Journal of Robotics Research, vol. 18,
no. 11, pp. 1119–1128, 1999.

[4] B. Cohen, I. A. Şucan, and S. Chitta, “A generic infrastructure for
benchmarking motion planners,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Vilamoura, Portugal, October 2012,
pp. 589–595.

[5] S. Haddadin, R. Belder, and A. Albu-Schäffer, “Dynamic motion plan-
ning for robots in partially unknown environments,” in Proceedings of
the 18th IFAC World Congress, vol. 18, 2011, pp. 6842–6850.

[6] J. v. d. Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” in IEEE Intl. Conference on
Robotics and Automation, Orlando, Florida, May 2006.

[7] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under
kinodynamic constraints,” in IEEE Intl. Conference on Robotics and
Automation, Rome, Italy, April 2007, pp. 704–710.

[8] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation,” in Robotics: Science and
Systems, Philadelphia, Pennsylvania, August 2006.

[9] F. Zacharias, C. Schlette, F. Schmidt, C. Borst, J. Rossmann, and
G. Hirzinger, “Making planned paths look more human-like in humanoid
robot manipulation planning,” in IEEE Intl. Conference on Robotics and
Automation, Shanghai, May 2011, pp. 1192–1198.

[10] S. M. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” Computer Science Dept., Iowa State University, Tech.
Rep. 11, 1998.

[11] I. A. Şucan and S. Chitta, “Motion planning with constraints using con-
figuration space approximations,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Vilamoura, Portugal, October 2012,
pp. 1904–1910.

[12] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, August 1996.

[13] A. Dobson, A. Krontiris, and K. E. Bekris, “Sparse roadmap spanners,”
in Workshop on the Algorithmic Foundations of Robotics (WAFR), June
2012.

[14] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[15] K. M. Wurm and A. Hornung, Octomap: 3D occupancy grid mapping
based on octrees, 2010, software available at http://octomap.sf.net.

[16] I. A. Şucan and S. Chitta, “MoveIt!” [Online]. Available: http:
//moveit.ros.org

