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Abstract— Single-query sampling-based motion planners are
an efficient class of algorithms widely used today to solve
challenging motion planning problems. This paper exposes the
common core of these planners and presents a tutorial for
their implementation. A set of ideas extracted from algorithms
existing in the literature is presented. In addition, lower level
implementation details that are often skipped in papers due
to space limitations are discussed. The purpose of the paper
is to improve our understanding of single-query sampling-
based motion planners and motivate our community to explore
avenues of research that lead to significant improvements of
such algorithms.

I. INTRODUCTION

This work aims to contribute to our understanding of
single-query sampling-based planners [1], [2] and to promote
the advancement of research towards truly substantial im-
provements of these planners as a whole. This paper system-
atizes and clarifies a large body of work by articulating (a)
the common core of single-query sampling-based planners,
(b) some of the existing heuristics that have been shown to
work well in practice, and (c¢) some of the implementation
details that are often left out in the corresponding papers
but can strongly influence the performance of an algorithm.
These implementation details are derived from the authors’
implementation and/or use of existing sampling-based mo-
tion planning software libraries. This paper also reveals the
breadth and wealth of research on this topic and can serve
as a reference for future work.

Single-query sampling-based planners have become very
popular due to their ability to quickly solve the motion
planning problem: finding a continuous valid path from a
given start state to a goal state, for a robotic system under
a set of constraints [3]. Examples include Rapidly-exploring
Random Trees (RRT) [4], [5], Expansive Space Trees (EST)
[6], [7], Single-query Bi-directional probabilistic roadmap
planner with Lazy collision checking (SBL) [8], and many
more (e.g., [9]-[24]). We will generically refer to this class
of algorithms as tree planners, due to the main data structure
they employ. These planners iteratively grow a tree of mo-
tions in the state space of the robotic system (see Figure 1),
using different heuristics. The tree is rooted at the starting
state of the robotic system. At every iteration, an attempt is
made to extend this tree with a new path segment (motion),
towards a new state. An advantage of using trees is that
they naturally encode the notion of order of states along
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Fig. 1. Example tree of motions grown in the state space X. Nodes
represent states in X’ and edges represent valid motions between states.

a path and can be used to provide a time parametrization
of states on paths. This becomes important when we are
interested in specifying solution paths in terms of control
inputs to the robotic system rather than a sequence of states
between which a controller could interpolate. The tree data
structure is a particular case of the roadmap used in the
Probabilistic RoadMap (PRM) algorithm [25], hence some
of our discussions apply to PRM as well. Vice-versa, some
of the observations made for PRM in earlier work [1], [26]
are relevant here.

From a theoretical standpoint, the objective of a tree
planner is to grow the tree of motions in such a manner that
the entire state space can be eventually covered. However,
coverage does not always need to be achieved before finding
a solution. In general, it is considered a good property if such
a planner is probabilistically complete [1] — if a solution
exists, it will eventually be found. From a practical point
of view, the performance of tree planners — the amount
of time spent to find a solution — is very important. This
is in fact a key motivation for the development of tree
planners. Many algorithms for guiding tree growth have
been introduced over the years (e.g., [4]-[24]) with the
purpose of improving performance. A number of software
libraries for motion planning containing such algorithms
have also been developed: MSL (Motion Strategy Library)
[27], MPK (Motion Planning Kit) [28], OpenRAVE [29],
OOPSMP (Object-Oriented Programming System for Motion
Planning) [30], ompl (Open Motion Planning Library) [31].

Even though tree planners are conceptually simple, correct
and efficient implementations are not trivial. In this work,
we isolate some of the more prominent ideas used by tree
planners and discuss a series of details that arise during their
implementation, details that often get left out of papers due



to space constraints. While this text is intended primarily
for readers interested in implementing their own single-
query sampling-based motion planner, we believe readers
interested in simply using existing implementations will find
this text helpful for better understanding and tuning the
implementations they use.

This paper is structured as follows. We first present the
interface and the typical execution of a tree planner in Sec-
tion II. The state space and related primitives are described
in Section III. In Section IV we give an overview of some
of the ideas introduced by previous work. We then continue
with lower level details that often get left out in Section V
and some tips on debugging tree planners in Section VI
Finally, we conclude in Section VII.

II. INPUT, OUTPUT AND EXECUTION OF A
TREE PLANNER

Let X be the state space in which the tree planner operates.
For every motion planning query, the following input should
be specified:

o Specification of a starting state s € X. This is where
the robotic system is considered to start at.

o Specification of a goal region G C X, G # 0. In
the simplest case, this can be a state in X (G =
{g9},9 € X). Some algorithms are only applicable if
the explicit representation of the goal state is available.
More generally, G is implicitly specified through the use
of an indicator function that decides whether a given
state is in the goal region or not (G = {z € X|g(x) =
true for some g : X — {true, false}}).

o Allowed time ¢ € RT. This is the amount of time
the planner is allowed to search the state space before
reporting failure.

The output of a tree planner is a valid solution path. In
case of failure, the solution path is empty. The path can be
represented as:

o A sequence of states, i.e., a kinematic path

o A sequence of inputs, i.e., a control path. In case we
are planning with controls, the path is discretized with
respect to time. Every element of the path will consist
of the state at that time, the control applied when in that
state and the amount of time the control is applied for.

The execution of a typical tree planner proceeds as fol-
lows:

Algorithm BUILDTREE(X s, G, t)
INIT(T, X, s)
while ELAPSEDTIME() < ¢t and NOGOALFOUND(G) do

Ttree «— STATETOEXPANDFROM(T)

Padd < PATHTOCONSIDER(Z¢ycc)

if CHOOSETOADD(pyqq) then

INSERT(T', paddq)

end if
end while
return 1’

// unless T already initialized

III. STATE SPACE AND RELATED PRIMITIVES

The state space X is a manifold consisting of all the
states a robotic system could potentially attain. The following
represents a minimal list of state space related primitives that
tree planners depend on:

« A bounding box for an ambient space C R? surrounding
X. Note that the dimension of this ambient space
can sometimes be larger than that of X. We use the
bounding box of an ambient space instead of that of
the state space to avoid the complexities that arise from
the topology of A'.

« A bounding box for the control space // C R¥. This
is only needed if we are interested in obtaining control
paths. Each component of an element in / represents
an input for the robotic system.

o State validator valid : X — {true, false}. valid(z) =
true for x € X implies x is a valid state. This usually
means x is at least collision free. Often, additional
constraints need to be satisfied by x. A more advanced
definition of valid is valid : X — R, where valid(z)
represents the distance to the nearest invalid state.
This latter definition can be used for exact collision
checking [32] and the so-called “continuous collision
detection” [33].

e Metric dist : X x X — [0,00). This is optional,
but many algorithms need to evaluate distance between
states. Depending on the state space, defining this metric
may be difficult.

o A low-level function for sampling states. This is usually
uniform sampling based on pseudo-random number
generators (see [2] for other generators, such as quasi-
random). It is very important that the topology of the
state space is accounted for in this routine, as this is a
common source of error. For certain spaces, uniform
sampling of states can be implemented by uniform
sampling in each dimension of the state space. However,
this is not generally the case. For instance, spaces
such as SE(3) need special attention to make sure
the sampling is uniform [34]. Based on this low level
functionality, the planning algorithm can implement
different sampling distributions (e.g., [9]-[11] and many
more).

o A function for state expansion. The purpose of this
function is to move away from a given state, so that
the tree expansion can be continued. In practice, this
function is often in the form of a local planner or a
model of motion:

— A local planner. A function of the form local :
X xXx[0,1] — X generates the states that lie on a path
segment between two given end-points. The topology
needs to be considered here as well [34]. Note that when
planning with controls such a function can be defined
only for specific robotic systems [1].

— Propagation of a control from a given state (forward
propagation). A function propagate : X xU x [0, 00) —
X generates the states the robot passes through when



applying a given control for a given amount of time
starting at a given state. This represents the model of
motion for the robot.

IV. TREE PLANNER HEURISTICS

Many of the algorithms introduced over the years present
ideas that can be combined and reused. Earlier on, the heuris-
tics a tree planner employed to expand its tree data structure
were what defined the planner (see for instance, EST and
RRT). As the research progressed, many other ideas were
introduced, combinations of existing ideas were proposed,
blurring the distinction among different tree planners. In this
section we aim to provide a series of ideas extracted from
algorithms that have been shown to work well in practice.
Many of these ideas (but not all) are compatible, meaning
that they can be combined to produce different algorithms.
Depending on the task, one could create an algorithm with
increased performance. To evaluate the performance of in-
dividual ideas we show relevant experimental results. When
such results exist in the literature we provide a summary of
those results. For the cases where no experimental data was
found, we present our own experiments.

A. Selecting States for Further Expansion

Deciding which parts of the tree of motions merit further
exploration is a fundamental step in the execution of a
tree planner and it weighs heavily on the planner’s overall
performance. This decision is problem-dependent and at this
time it is unclear whether an optimal approach to making
this decision exists. In this section we present some of the
better-known techniques for selecting nodes to be expanded,
but this list is by no means comprehensive. The research on
this topic is so extensive that presenting it entirely is simply
not feasible. A small sample of this research is referenced
in this work [4]-[24], [35]-[38].

1) Using Voronoi bias: One of the most successful ideas
is to extend the tree of motions towards a random state,
starting from the state in the tree that is nearest to that
random one [4]. Choosing states to expand from in this fash-
ion guides the tree of motions towards the largest Voronoi
regions. This approach does not guarantee the tree never
grows onto itself but seems to work well as long as a good
distance metric is available [35], [39].

2) Using the out-degree of the nodes in the tree: Focusing
on continuing the tree growth from nodes that have a lower
out-degree is likely to take the search into unexplored space.
This approach defines a probability distribution over the
nodes in the tree of motions and selects nodes for expansion
according to this distribution [6].

3) Using a decomposition of the state space: A similar
technique is to split the state space into cells. These cells
can be defined by grids imposed on the space [8]. Every
new node added to the tree is also placed in one of the
defined cells. When continuing the tree expansion, nodes
from emptier cells are preferred. This implies a probability
distribution is defined over the cells in the grid. Since there
are typically fewer cells than nodes, selecting a node to

expand from is a more efficient process. This approach has
been shown to work well for difficult problems [8].

Using such decompositions can become problematic if
the number of cells is large. The number of cells can
become very large for high-dimensional spaces. As the tree
increases in size, it is likely more will be gained from
continuing the tree expansion from the cells corresponding to
the boundary of the explored space. This can be achieved by
keeping track of the number of neighbors for each cell [21].
Another possible improvement is to use multiple levels of
decomposition: we can define larger cells that are themselves
split into smaller cells [21]. This combination of ideas can
lead to one and even two orders of magnitude speedup,
depending on the model of the robot and the environment,
as experiments in [21] show.

Another method of decomposing the state space is hi-
erarchical decomposition [19]. The state space is assumed
to be bounded and considered to be one large cell at
the beginning of the exploration. As the tree grows, the
cells being expanded from get split in half. This approach
proceeds deterministically by maintaining a queue of cells
that need to be explored, prioritized by their volume and the
iteration number of their last exploration step [19].

4) Projecting the state space to lower dimensional spaces:
More recently, a number of algorithms employ projections
from the state space to a lower dimensional space to be
used in conjunction with decompositions. The intention is to
approximate the coverage of the state space by evaluating
the coverage in the projected space. This approach was
introduced since evaluating coverage in lower dimensional
spaces is easier, as such spaces can often be decomposed
into a manageable number of pieces. Although not explicitly
mentioned, orthogonal projections are suggested in [8]. Us-
ing projections to the workspace has been shown to be useful
for mobile robots [20]. To the authors’ knowledge, the first
explicit use of generic projections is in [40]. It is often the
case that even simple, intuitive projections perform well [21],
but it is unclear whether this can be done in general [41].

B. Using a Notion of Direction

Accounting for the direction of expansion is another im-
portant idea that helps in guiding the tree expansion. Keeping
track of previously used directions increases the chance of
using a better direction of expansion [18], [35]. In the case of
narrow passages, Principal Component Analysis (PCA) can
be used locally to find a good direction of growth. This use of
PCA can lead to a speedup of up to one order of magnitude,
depending on the environment, as reported in [37].

A related idea is that of computing discrete paths that
lead to the goal [20]. These discrete paths are a sequence of
cells in a decomposition of the workspace, one that connects
the starting state to the goal region. Even though these
discrete plans are in the workspace, and as such, cannot be
directly converted into state space plans, they can serve as
a guide, a means to lead the state space exploration. It is
typically the case that computing these discrete motion plans
is much easier and much faster. As the state space exploration



proceeds, gained information can be used to recompute the
discrete plan being used as a guide. This interplay of discrete
and continuous search speeds up exploration. It has been
shown that in certain mobile robotics applications, a speedup
of up to two orders of magnitude can be obtained [20].

C. Bi-directional Search

A very successful technique for improving the perfor-
mance of tree planners is bi-directional search. This is a
search technique borrowed from artificial intelligence that
has also been used successfully in the context of tree-based
planning [6], [8], [12] — speedup factors of 3 to 4 are reported
in [12]. Bi-directional search means that instead of growing a
single tree from the start state towards the goal region, two
trees are grown: one from the start state towards the goal
region and one from the goal region towards the start state.
Note this method requires that we have a means of sampling
the goal region, or we know the actual goal state [42]. The
two trees can take turns at being grown or can be grown in
parallel. After each iteration that adds a motion to a tree, an
attempt is made to connect to the other tree [8], [12]. If this
attempt is successful, a solution path has been found: the path
from the start state to the connection state concatenated with
the reversed path from the goal to the connection state. Note
this is a second requirement for this technique to be applied:
the paths that are added to the trees need to be reversible.
This is usually the case when computing kinematic paths or
when systems of differential equations are used to model the
motion along a path segment. However, when using physics-
based simulation, the paths can no longer be reversed. An
additional problem with bi-directional search is that when
planning with controls, even if paths can be reversed, gaps
between the two trees need to be closed, and this may be
non-trivial [13], [43].

D. Lazy Collision Evaluation

Another very successful idea is that of lazy collision
checking [8], [44]. Since collision checking usually takes
more than 90% of a sampling-based planner’s execution time,
it is desired to minimize the number of collision evaluations.
A method to do this is through the use of lazy collision
evaluation. This means that all states on all paths are assumed
valid until a solution is found. The path segments that make
up the found solution are then checked for collision. If a
segment is found to be valid, it is marked as such. If it is
not valid, it and its descendants are removed from the tree. If
the entire path was found to be valid, the algorithm completes
successfully. If the solution was found to be invalid, the
tree continues to be grown, remembering the parts that were
marked as valid. This technique allows the planner to check
collisions only for the path segments it tries to use as part
of the solution, leaving other ones unchecked, thus reducing
the number of total collision evaluations.

As an example of the speedup that can be obtained
with lazy collision evaluation we present a comparison of
two algorithms from the ompl [31] library: EST and its
bi-directional implementation with lazy collision checking,

SBL. Our own experiments' show that performing this
comparison for the problem of moving a 7 degree-of-freedom
manipulator in the presence of obstacles, from above to
underneath a dining table, a speedup factor of 6.3 in favor
of SBL can be observed.

E. Goal Biasing

If states in the goal region can be sampled (or are known a
priori), the tree growth can be biased to grow towards these
states. Biasing can be done for example by attempting to
connect to goal states periodically (e.g., [14]) or by growing
the tree from states that are closer to the goal (e.g., [45]).
For the latter approach we need either a distance metric or
a heuristic to evaluate the distance to the goal. While this
method can lead to significant speedup (we report speedup
by a factor of 3 to 90 in [45]), it can also degrade the
performance of an algorithm when the solution path first
needs to go farther from the goal and then back towards it
(RRT slowed down by a factor of up to 3 in [21]). Using
this approach in conjunction with a learning technique that
limits growing towards the goal from specific regions, in
case of repeated unsuccessful attempts, may alleviate the
problem [38].

F. Projection onto the Constraint Space

If the space of valid samples has a small volume with
respect to the state space, most of the sampled states will be
invalid. This can lead to significant performance degradation.
For instance, if a robot arm is asked to manipulate an open
container, we most likely want the arm not to spill the
content. This means we will constrain at least one degree of
freedom for the arm to a very small range, which effectively
makes the volume of the manifold of valid states in the
state space be 0. The chance of sampling valid states is
then practically null. In such cases, techniques that project
samples onto the lower dimensional constraint manifold can
be employed [46]. For a review of some methods of sampling
in such lower dimensional manifolds, the reader is directed
to [47], where three methods are experimentally evaluated:
Randomized Gradient Descent, Tangent Space Sampling and
First-Order Retraction, with the conclusion that First-Order
Retraction is the preferred option.

G. Using Motion Primitives

In certain cases we may be interested in limiting the set
of motions a robot is allowed to make. This can be done
for instance by discretizing the control space ¢/ [16]. Such
an approach is reported to achieve speedup factors of 3
to 20, for some problems [16]. The notion of a maneuver
automaton [48] can be used to define a formal language
on motion segments that can be used to form valid paths.
Such techniques help with a more systematic exploration in
the control space: one can guarantee that two controls that
are very similar to one another are not both evaluated. The
disadvantage is however that selecting a finite set of controls

IThe data for all experiments conducted for this paper is available at
http://kavrakilab.org/data/ICRA2010TP/index.html



from an infinite control space may prevent finding solutions
when they exist.

H. Parallel Execution

It has been shown that sampling-based planners perform
very well when using parallelization, be that an embarrass-
ingly parallel setup [49] (running multiple instances of the
planner until one of them finds a solution) or using shared
memory parallelism [21]. Due to the randomized nature of
the algorithms, super-linear speedup can be observed with
respect to computation time, as shown in [21].

V. THE LITTLE DETAILS

This section is a list of details the authors feel are
important to have in mind when implementing a sampling-
based motion planner. The order in which these details are
presented roughly follows the implementation of a typical
tree planner. For the experiments we conducted, the OOP SMP
[30] library was used and all reported values are averaged
over 100 runs, on a 2.83 Ghz CPU with 8 GB RAM running
Ubuntu Linux.

A. How Far to Grow a New Motion

Based on the set of heuristics used (from Section IV),
the algorithm has chosen a state in the tree it is about to
expand from and a direction of expansion. The question
that remains is how far to expand this motion. In general,
a good approach is to grow the tree until an obstacle is hit
or some maximum length is reached. Defining minimum and
maximum lengths of motions to be added in the tree prevents
us from having too many short motions around a single
state and from bouncing from one side to the other in the
state space. Depending on the space we are planning in, the
parameters for minimum and maximum motion lengths likely
need to be adjusted in order to get reasonable progress (more
on how to evaluate the progress in Section VI). Keeping
somewhere around 90% of the valid part of the motion is
potentially better than keeping the entire valid part, since the
last valid state may be too close to a collision and further
expansions from there would be unsuccessful.

To demonstrate the influence of the length of added mo-
tions on the runtime of a sampling-based planning algorithm
we show running times of EST with different lengths for
added motions for a free-flying robot in 2D.

New motions in our EST implementation are started from
some state s, already existing in the tree, and extend to
a state d, sampled around s using a Gaussian probability
distribution. We thus control the length of the new motions
by changing the standard deviation of the sampling distri-
bution for d. We show some experiments®> in Table 1. For
low standard deviation, we have slower progress, so higher
runtimes, and for standard deviation that is too high, we are
bouncing from one side of the state space to the other, again
increasing runtime.

2The data for all experiments conducted for this paper is available at
http://kavrakilab.org/data/ICRA2010TP/index.html

Std. Dev. 0.1 02 | 05 1.0 | 20 | 5.0
Runtime(s) | 1.00 | 0.56 | 0.40 | 0.41 | 0.48 | 0.63

Runtime of EST with varying parameters for extending motions.

Table 1.

When expansion is attempted in narrow passages, it is
quite possible even short motions would cause collisions. A
means to address this issue is to allow a small penetration of
obstacles. This leads to higher chances of finding samples in
narrow passages, but introduces erroneous samples. These
erroneous samples can however be replaced by valid ones
through a re-sampling process in a small vicinity of the
penetrating sample [50].

A similar idea is to “retract” the robot and compute
valid states along the surface of the colliding obstacle, thus
generating a set of candidate motions that take the robot
through the narrow passage [51]. This increases the chances
of traversing the narrow passage, as more paths inside it
are being evaluated. Speedup of more than two orders of
magnitude is reported in [51] for particularly difficult narrow
passage problems.

B. Intermediate States on Motions

Adding intermediate states along motions can lead to com-
putational speedup, if the number of added states is not too
large. In Table 2 we show the benefits of running RRT with
adding of intermediate states at varying resolutions, along
the generated motions, for a free-flying robot in 3D2. The
resolution specifies the distance between added intermediate
states. We report the speedup achieved with respect to the
algorithm running without adding intermediate states (co
resolution). We observe that adding too many states can slow
us down, but we can also obtain speedup of up to 20% for
appropriate values of the resolution.

Resolution | Runtime(s) Speedup

00 0.367 1.00
0.005 0.492 0.75
0.010 0.310 1.19
0.050 0.334 1.10
0.100 0.339 1.08
0.500 0.317 1.16
1.000 0.307 1.20
5.000 0.369 1.00

Table 2. Runtime of RRT with intermediate states at varying resolutions.

C. Continuation of Exploration

Since tree planners cannot decide that a solution does not
exist, they will simply fail after the amount of time allowed
for computation elapses. In some cases, a little additional
computation time can lead to finding a solution. For this
reason it is best to organize the tree planner in such a way
that a subsequent call without clearing the data structures in
the meantime continues the exploration using the previous
tree of motions. Of course, this assumes the environment
remains unchanged in between calls.



When the environment does change in between calls to
the motion planner, parts of the tree of motions become
invalidated. Instead of starting with a new tree, parts of the
tree that remain valid can be kept [36], [52].

D. When Using Physics Simulation

When using physics-based simulators (such as ODE [53]),
the simulation can become unstable during planning, espe-
cially with random selection of controls. This needs to be
detected, to avoid obtaining erroneous solutions. In general,
sanity checks such as verifying that joints have not been
broken and the positions of bodies are valid floating point
numbers are sufficient.

Another potential problem with physics simulation is that
the results of forward propagation may not seem determinis-
tic if different time steps are used during the planning process
(e.g., ODE). For this reason, it is recommended that a constant
time step be used throughout the planning process.

E. Path Shortening and Smoothing

Due to the randomized nature of the planners discussed in
this work, the obtained solution paths usually contain unnec-
essary and awkward maneuvers. However, post-processing
solution paths using shortening and smoothing algorithms
[54], [55] is possible and is encouraged.

VI. DEBUGGING A TREE PLANNER

This section consists of advice on how to debug and test
a tree planner, and a list of suggestions that may help with
the development. Once it is implemented, a tree planner is
difficult to debug, due to its randomized nature. In addition to
typical software engineering approaches, it is recommended
that the amount of randomness in the execution of the planner
is minimized (fixing the random seed, running in a single
thread). Typical things to test are:

1) Running the algorithm on toy problems, where solutions
are known to exist. Visualizing the solutions and on-screen
projections of the tree of motions is actually one of the
best ways to check whether they are correct. Checking
whether the states along obtained solution paths are inside the
bounding box of the state space is also a good idea. This test
should be repeated with different random seeds and different
number of threads, if applicable.

2) Assuming the solutions of toy problems seem correct,
the next step is to run on more complex problems and
compute statistics such as number of iterations, number of
created states, average path segment length, average runtime
until a solution is found. To make sure the algorithm is doing
what it is supposed to, counting events is very useful. What
this means is that various counters should be added to the
code so that we can check how often certain pieces of code
are executed, on average (e.g., to check whether goal biasing
is used as often as we would like).

If we are interested in comparing a newly implemented
motion planner to other existing ones, a set of benchmark
problems will be needed. Unfortunately, there is no known
set of good benchmark problems, to the authors’ knowledge.

In fact, the notion of “good benchmark” is as of yet un-
clear’. On the selected problems, looking at the runtime
is important. Due to the random nature of the algorithm,
averages need to be taken over multiple runs. In addition
to the runtime, the variance of the runtime is important as
well: a planner that has lower variance in runtime tends to be
more reliable. The average number of states in the tree, used
memory, number of calls to collision checker (or physics
simulator) are other values to look at.

VII. CONCLUSIONS

In this paper we assumed motion planning was performed
for robotic systems. However, it should be noted that with
small adjustments, motion planning algorithms can be ap-
plied to protein folding, digital actors and other problems [1].
As a general rule of thumb, bi-directional search is preferred
if a means to sample the goal region is available and the paths
of the robotic system are reversible. Lazy collision checking
is preferred, if it can be applied. In terms of guiding the
tree exploration, the idea of leading the exploration using
discrete paths in a projection of the state space provides
significant computational advantages. If narrow passages are
prevalent, techniques such as the ones based on PCA or
retraction should be used. Depending on the task, more of
the ideas presented in previous sections can prove beneficial.
Furthermore, shared-memory parallelization is advised, if
multiple compute cores are available.

The material in this paper is by no means exhaustive
and the reader is encouraged to see the referenced literature
for more details. However, we made an effort to present
high-level decisions and low-level aspects that can lead to
the implementation of a good single-query sampling based-
motion planner. The high-level decisions are in fact a set
of ideas extracted from algorithms that have been shown to
perform well in practice. The low-level aspects are details
that usually get left out from papers in the interest of
space. The purpose of collecting this information in a single
paper is to improve our understanding of sampling-based
tree planners and to motivate our community to seek truly
substantial improvements to these planners as a whole.
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