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Abstract— Robots executing practical tasks in real environ-
ments are often subject to multiple constraints. These con-
straints include orientation constraints: e.g., keeping a glass of
water upright, torque constraints: e.g., not exceeding the torque
limits for an arm lifting heavy objects, visibility constraints:
e.g., keeping an object in view while moving a robot arm,
etc. Rejection sampling, Jacobian projection techniques and
optimization-based approaches are just some of the methods
that have been used to address such constraints while computing
motion plans for robots performing manipulation tasks. In
this work, we present an approach to handling certain types
of constraints in a manner that significantly increases the
efficiency of existing methods. Our approach focuses on the
sampling step of a motion planner. We implement this step as
the drawing of samples from a set that has been computed
in advance instead of the direct sampling of constraints. We
show how our approach can be applied to different constraints:
orientation constraints on the end-effector of an arm, visibility
constraints and dual-arm constraints. We present simulated
results to validate our method, comparing it to approaches that
use direct sampling of constraints.

I. INTRODUCTION

Robots operating in real environments need to plan their
motions to operate safely. A motion plan is a continuous
path between the start state of the robot and a goal region,
subject to a set of constraints. Early research in motion
planning typically required collision avoidance as the sole
constraint [1], but many practical problems require imposing
additional constraints. In this paper, we focus on motion
planning with constraints that arise for manipulators (fixed or
mobile) operating in real environments. One typical example
of such constraints is the orientation constraint that needs to
be maintained for an end-effector carrying a glass of water.

Sampling-based algorithms [2], [3] have been widely used
to plan motions for manipulators due to their ability to plan
efficiently in high-dimensional configuration spaces (e.g.,
[4]–[7]). Furthermore, sampling-based planners provide a
generic framework that can handle a variety of constraints
and compute plans for a variety of robots (e.g., [8], [9]).
For the remainder of the paper, we will consider sampling-
based motion planners used to compute motion plans subject
to two types of constraints: collision avoidance constraints
and task constraints. Collision avoidance refers to computing
motion plans such that the robot does not collide with the
environment or with itself. In this paper, task constraints are
ones that have the potential to reduce the dimensionality of
the valid part of configuration space in a manner that does not
easily allow reparameterization (i.e., a different configuration
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space cannot be explicitly defined such that it inherently
satisfies the given task constraints). The implicit subspace
defined by a task constraint is also referred to as a “constraint
manifold”. The specific task constraints we consider in this
paper can be verified geometrically, i.e., the constraints do
not depend on velocities, accelerations, etc. When such
constraints reduce the number of degrees of freedom of the
system, the term “kinematic constraints” is often used. Thus,
motion planning is performed under geometric constraints
only (sometimes called “path planning” [2]).

Fig. 1. A representation of a sampling-based planner exploring a lower
dimensional constraint manifold.

In general, respecting task constraints is significantly more
difficult than respecting collision avoidance constraints be-
cause the process of generating samples that satisfy task
constraints can be more complex when the dimensionality of
the constraint manifold is lower than that of the configuration
space itself. To address this issue, specialized algorithms can
be used [10]–[19].

In this paper we present a new approach to address
task constraints during motion planning in a manner that is
complementary to previous work. Our approach starts with
computing an approximation of the constraint manifold of-
fline, using already existing specialized sampling algorithms
(e.g., [10]–[15]). Then, we use this approximation to plan
on the constraint manifold directly instead of planning in
the full configuration space (see Figure 1). Our approach
can be used without modifying the planning algorithm itself.
By construction, the constraint manifold satisfies task con-
straints, so the motion planner will effectively have to address
only the collision avoidance constraint. The advantage of our
method is that instead of sampling the configuration space
using a relatively slow, specialized sampling algorithm, the
constraint manifold can be sampled very quickly online using
data structures computed offline. We show, through simulated
experiments, that our approach is able to reduce planning
times by orders of magnitude in some cases, across different
planning algorithms.



The offline computation part of our approach relies on pre-
vious work, which is discussed in Section II. Details on our
approach are presented in Section III and the experimental
evaluation is in Section IV. Conclusions follow in Section V.

II. BACKGROUND AND RELATED WORK

A. Sampling-based Motion Planning
Sampling-based algorithms are state-of-the-art techniques

for solving the motion planning problem. Such algorithms
operate using the concept of a configuration space C (or state
space, when dynamics are considered) [2], [3], a space in
which the entire robotic system is represented as a point. For
the case of a robot arm, points in C usually represent the joint
values (the degrees of freedom) of the robot arm. The set of
points in the configuration space that corresponds to valid
configurations of the robot is referred to as the valid part of
the configuration space: Cv ⊆ C. Motion planning algorithms
are used to find continuous paths between given start and
goal configurations, such that the paths lie entirely in Cv .
Sampling-based planners are usually probabilistically com-
plete [20], which means that they eventually find a solution
when one exists, but do not terminate if no solution exists.

Sampling-based motion planners have been shown to be
efficient for solving problems in high-dimensional spaces.
The core idea of such motion planning algorithms is to
approximate the connectivity of Cv . From a highly abstract
perspective, all sampling-based motion planning algorithms
require at least the following two components that interact
to construct the approximation of Cv:

1) Sampling. This is the process of generating samples
for the approximation of Cv . This process usually
relies on more basic functionality that allows sampling
C, followed by constraint evaluation (e.g., collision
detection) and potentially constraint enforcement.

2) Local planning. This is the process of connecting
pairs of configurations in C and checking whether the
resulting motion segment lies in Cv .

The abstraction above is not intended to be detailed or
complete, but to point out the main components that we
consider when planning with constraints.

When dealing with collision avoidance constraints only,
the sampling and local planning processes are straight-
forward. If Cv 6= ∅, sampling C (e.g., using a uniform
distribution) will eventually produce samples that are also
in Cv (i.e., rejection sampling usually works). The local
planning process can follow a similar strategy: if the straight
line between two valid configurations lies in Cv , it can be
included in the approximation to Cv .

The statement above includes the hidden assumption that
the volume of Cv is not negligible within C. This assumption
usually holds true for collision avoidance constraints alone,
but fails if we include task constraints that make Cv be
a lower-dimensional constraint manifold. In this case, the
probability of finding configurations in Cv by rejection sam-
pling from C tends to 0. To address this issue, a number of
techniques can be employed, as described below.

B. Planning on Constraint Manifolds
The problem of planning on constraint manifolds is one

that has been well studied in the robotics literature [10]–[19].
A possible approach is to change the sampling mechanism

of a planner such that samples drawn from C are projected to
the constraint manifold. One of the first projection techniques
that was used within sampling-based motion planning is
Randomized Gradient Descent (RGD) [10]. This method
relies on sampling the robot’s configuration space itera-
tively, towards the constraint manifold, for the specific case
of closed chains. Improvements to the RGD algorithm to
make it address more general constraints were developed
as well [13]. The kinematics-based roadmap [11] and the
Random Loop Generator (RLG) algorithm [12] were also
designed to address the issue of sampling closed-loop chains.
The kinematics-based roadmap breaks loops into multiple
open chains and then uses inverse kinematics to enforce
closure constraints. RLG relies on sampling only a subset
of the joint variables that make up the closed chain and then
solving for the rest.

A number of projection techniques were evaluated by
Stilman [14] where it was suggested that techniques based
on the pseudo-inverse of the Jacobian may be more efficient.
Berenson et al. [15] have shown how Jacobian pseudo-
inverse projections as well as rejection sampling can be used
to address a number of task constraints applied to a robot’s
end-effector. The work of Suh et al. [18] expands on this
approach and performs planning on the tangent bundle of Cv ,
performing projections to the constraint manifold only when
prescribed boundaries or error limits have been reached, thus
reducing the number of projection operations, but at the cost
of increased approximation error.

The work of Porta et al. [19] shows how to construct an
atlas for the constraint manifold at runtime, and plan directly
on that constrained space.

The idea of storing configurations that satisfy a subset of
the constraints imposed during planning exists in previous
work as well. Kuffner et al. [16] use precomputed sets of
stable poses in their work with planning for humanoids. A
similar use is also found in the work of Zacharias et al. [17],
where precomputed sets of configurations that appear more
human-like are used.

III. APPROXIMATING CONSTRAINT MANIFOLDS

Given a particular set of task constraints, we can compute
an approximation of the entire constraint manifold, subject
to the task constraints alone (i.e., not considering collision
avoidance constraints). This approximation has the form of
a graph G = (V,E), the Approximation Graph, such that
all vertices in V correspond to configurations that satisfy the
task constraints, and crossing any edge in E does not leave
the constraint manifold. This graph is essentially the same
as the roadmap data structure constructed by PRM [4].

A. Generating an Approximation Graph
Algorithm 1 describes the process of generating the Ap-

proximation Graph given a set of constraints c. Lines 1–4 of
the algorithm generate a requested number of configurations



that satisfy the constraints c. The Sample() function can
be implemented using techniques as described in previous
work [10]–[15]. Depending on the type of constraint, various
sampling strategies can be efficient. Once the requested
number of configurations is computed, a number of valid
expansion directions are computed for each configuration as
well (lines 5–10). These directions are stored as edges in the
Approximation Graph and encode the information that task
constraints are maintained while moving along such edges.
This holds true only if the local planner used by the planner
is the same as the one used by ValidEdge() (line 8).

Algorithm 1 Generate Constraint Manifold Approximation
Input: c: task constraint; ns: # configs; ne: # edges/config
Output: Approximation Graph

1: Approx = EmptyApproximation()
2: while ConfigCount(Approx) < ns do
3: if Sample(c, x) then
4: AddSample(Approx, x)
5: for i = 0 to ConfigCount(Approx)-1 do
6: j = 0
7: while OutEdges(Approx, i) < ne and

j < ConfigCount(Approx) do
8: if i 6= j and ValidEdge(Approx, i, j) then
9: AddEdge(Approx, i, j)

10: j = j + 1
11: return Approx

B. Planning Directly on the Constraint Manifold
Consider a problem instance that asks for a motion plan in

space Cv ⊆ C, where Cv corresponds to a set of constraints c.
Instead of running the planner on the space C and sampling
configurations that satisfy c, our approach runs that planner
on the space C′ ⊆ C, Cv ⊆ C′, subject to the same set
of constraints c. C′ is the constraint manifold that satisfies
c′ ⊆ c, a subset of the original constraints. The typical
setup would be to have c′ correspond to the task constraints
and c to include additional constraints such as collision
avoidance. Since C′ cannot be represented explicitly, we
use the corresponding Approximation Graph representation,
computed by Algorithm 1. If the constraints c\c′ further
reduce the dimensionality of the constraint manifold, pro-
jection techniques as mentioned in Section II-B would still
need to be used and the usefulness of the Approximation
Graph is severely reduced.

C. Sampling a Constraint Manifold using the
Approximation Graph

Sampling-based algorithms use a variety of distributions
for sampling the configuration space they search. At a low
level, most of these distributions can be implemented in
terms of a few core functions. The planning algorithms
used in this work require only two such core functions:
(1) sampling configurations uniformly at random, and (2)
sampling configurations uniformly at random within a ball
around a particular configuration. We will now show how
to implement these functions using a constraint manifold
approximation. Similar techniques can be developed for other

sampling functions that implement different distributions
(e.g., normal distribution), if needed.

The process of sampling configurations uniformly at ran-
dom is simply replaced by sampling an integer value i ∈
[0, ns − 1], where ns is the number of configurations in
the Approximation Graph. The generated sample is then the
configuration at index i in the Approximation Graph. This
process is significantly faster than actually generating a new
sample on the constraint manifold. The uniformity of this
sampling process is contingent on the Sample() function
from Algorithm 1 producing samples uniformly at random.
Unfortunately, due to the use of projection techniques, that
uniformity is not always guaranteed.

Sampling configurations uniformly in a ball is more in-
volved. For efficiency reasons we chose to attach a tag to
every configuration in the Approximation Graph. That tag
is in fact the index position of the configuration in the
Approximation Graph. When a planner requests sampling
nearby a configuration ns, Algorithm 2 is called. If ns
was previously sampled from the Approximation Graph, it
has an associated tag. Using that tag, the edges from the
Approximation Graph that correspond to ns can be found
(lines 2,3). Then sampling a state in the vicinity of ns can
be implemented as choosing one of the edges (lines 4,5)
and sampling a configuration along that edge (lines 6–8),
such that the sampled configuration is within the requested
ball. Since the sampled configuration is along an edge in
the Approximation Graph, it has higher probability of being
valid. If no tag is found for ns (e.g., if the configuration ns
was computed by the planner using interpolation between
other previously sampled configurations), a random direction
remains to be used (towards a random configuration in
the Approximation Graph) (line 1). The sampling process
described by Algorithm 2 is efficient, but it is not uniform
for multiple reasons. We use a source of samples that may
not be uniform to begin with (due to the Sample() function
not necessarily producing uniform samples) and the step
at line 7 does not respect the fact that the volume of the
space is concentrated near the surface of the ball in higher
dimensional spaces. Even with this caveat, experimental
results indicate this sampling procedure can work well.

Algorithm 2 Sample Inside Ball
Input: ns: config. to sample around ; d: ball radius
Output: x: a config. at distance ≤ d from config. ns

1: x = RandomElement(Configurations(Approx))
2: if Tag(ns) ∈ [0, ConfigCount(Approx)−1] then
3: nbh = Neighbors(Approx, Tag(ns))
4: if UniformRand(0, 1) > 1/|nbh| then
5: x = RandomElement(nbh)
6: if Distance(ns, x) > d then
7: d′ = UniformRand(0, d)
8: x = run local planner from ns to x up to distance d′

9: return x

D. Parameterizing the Approximation Graph
The same task constraints can often arise in different

robot applications. In some cases, however, there may be



complex constraints that vary slightly. For example, when
grasping objects such as a tray using two arms, the distance
between the end-effectors has to match the size of the
grasped object. This constraint can be parameterized using a
single parameter, the distance between the two end-effectors
along the length of the tray.

For constraints whose differences can be described using
one parameter, it is possible to construct an Approximation
Graph for a range of values for that parameter. The set
of configurations can then be sorted with respect to that
parameter to make look-up easier. When using the Ap-
proximation Graph during planning, a binary search can be
performed to identify the usable range of configurations in
the Approximation Graph for the value of the parameter
specified by the problem. The size of this range depends on
the error that is allowed in the value of the parameter for the
constraint. This approach works only if the allowed error is
above 0. The same sorting idea can be used to identify usable
ranges of Approximation Graph edges when sampling with
Algorithm 2.

When describing constraints by more than one parameter
that is allowed to vary, it may be more difficult to quickly
identify the usable range of configurations. One option is to
sort offline by one parameter only and sort by additional pa-
rameters online, after the range satisfying the first parameter
has been identified. After the subsequent online sorting step,
a further reduced range can be identified.

With this simple idea, a continuum of similar constraints
can be handled directly. There are two factors to keep in mind
when constructing Approximation Graphs for parameterized
constraints: (1) the smaller the variation allowed in the
parameters of a constraint, the larger the Approximation
Graph needs to be and (2) the number of configurations in the
Approximation Graph is expected to increase exponentially
with the number of constraint parameters considered.

E. Probabilistic Completeness
As described, the method we presented is not probabilis-

tically complete because it limits the sampling of the con-
figuration space to a fixed set. A simple approach to regain
probabilistic completeness is to run a procedure that gen-
erates a cache of configurations on the constraint manifold
in parallel, while the planner is running. When the planner
needs to sample a configuration, it draws it from the cache
generated at runtime, if such a sample is available, otherwise
it draws it from the Approximation Graph. The procedure
that fills the cache of configurations is likely slower than
just drawing configurations from the Approximation Graph,
but allows the planner to be probabilistically complete.

IV. EXPERIMENTS

A. Task Constraints
We evaluated the benefits of using an Approximation

Graph for three sets of constraints. We provide here a de-
scription of each constraint. We compare our approach (using
the Approximation Graph) for motion planning with these
task constraints to a baseline approach for dealing with these

constraints without using the Approximation Graph. In this
context, we also describe the sampling and local planning
techniques used for each constraint. These techniques are
used both for offline computation of the Approximation
Graph (in our approach) and as part of motion planning
itself (in the baseline approach). The sampling techniques
themselves are not a contribution of this work and can be
replaced by any means introduced in previous work.

The constraints we consider are applied to the arms of the
PR2 robot, which have 7 degrees of freedom each.

1) End-effector orientation constraint: When manipulat-
ing objects in the environment it is often necessary to
maintain their orientation fixed, or approximately fixed. For
example, when moving a glass of water, its content should
not be spilled. To respect this constraint, the orientation of the
end-effector on an arm carrying the glass needs to stay fixed:
i.e., the roll and pitch are set to specific values, depending
on the grasp, while the yaw is allowed to vary (with respect
to a global frame of reference). For this paper, we consider
upright constraints, i.e., constraints where the roll and pitch
of the end-effector are 0.

A joint configuration that satisfies these constraints can
be sampled using inverse kinematics: the pose of the end-
effector is sampled (values for the roll and pitch being
always the same) and inverse kinematics is executed to
compute the corresponding joint values. This procedure leads
to a success rate of 99.5%, i.e., 99.5% of the time inverse
kinematics succeeds at finding a configuration that lies on
the constraint manifold. If an analytical inverse kinematics
solver is not available, numerical solvers can be used instead.
As mentioned in Section II-B, Jacobian-based projection
techniques can also be used to project points that have been
directly sampled in joint space onto the constraint manifold.

Because this constraint is imposed on the end-effector, the
local planner performs linear interpolation between positions
of the end-effector and spherical-linear interpolation between
the orientations of the end-effector. The interpolated poses
are mapped onto joint configurations for the arm using
inverse kinematics. Interpolating between configurations in
this manner is more likely to maintain the validity of the
constraint along a motion segment.

2) Visibility cone constraint: When analyzing a grasped
object in more detail, it is often necessary to move that object
while keeping it within a sensor’s field of view. This is useful,
for example, for robots like the PR2 which need to move a
checker-board target in their field of view during calibration.
This constraint can be specified using a visibility constraint
consisting of two parts: (1) the visibility cone to a specified
area (labelled the cone base) on the grasped object’s surface
needs to remain unobstructed by robot links, and (2) the axis
of the visibility cone is within a maximum angle with respect
to the sensor axis, i.e., the object remains in the field of view
of the sensor. In this paper we used a cone base of radius
of 0.1m and a maximum angle of 30 degrees with respect
to the sensor.

This constraint does not reduce the dimension of the
constraint manifold. Sampling of valid configurations can



thus be performed with rejection sampling. The sampling
success rate in this case is 0.7%. Thus, the sampling step
is a relatively expensive operation when performed online
as part of motion planning. In our approach though, this
sampling step is primarily employed offline in the generation
of the Approximation Graph. Online, the motion planner
samples directly from the Approximation Graph, saving a
large amount of effort. The local planner performs linear
interpolation between configurations in joint space.

3) Dual arm grasping constraint: For larger objects,
robotic systems with multiple arms may grasp an object with
two arms: one on each side of the object. Depending on the
type of object, there may be additional orientation constraints
for each end-effector. We consider upright constraints, fixing
the roll and pitch for each end-effector to be 0.

The sampling process consists of sampling the pose of
one end-effector, then computing the pose for the other end-
effector (using information about the grasp on the object) and
then performing inverse kinematics for both end-effectors.
Since this is a closed-loop chain, a number of other different
methods for sampling could have been used as well, as
discussed in Section II-B. The success rate of the sampling
method we used is 13.3%. Again, as for visibility constraints,
sampling will be expensive when performed online. The
local planner is the same as for the orientation constraints
described in 1).

B. Experimental Setup
We used a number of state-of-the-art sampling-based plan-

ners (implemented in OMPL [21]): RRT (Rapidly-exploring
Random Trees) [22], RRT-Connect (a bi-directional search
version of RRT) [6], an implementation of KPIECE (Kino-
dynamic Planning by Interior-Exterior Cell Exploration) [23]
under geometric constraints solely, LBKPIECE (a lazy
bi-directional implementation of KPIECE) [23] and SBL
(Single-query Bi-directional probabilistic roadmap planner
with Lazy collision checking) [7].

Fig. 2. PR2 operating among obstacles while keeping roll and pitch
fixed for the right arm end-effector. Left: Start configuration. Right: Goal
configuration.

We tested these algorithms on three different environments
using the PR2, each environment using a corresponding
task constraint from Section IV-A. Environment 1, shown
in Figure 2, asks for the right arm to move an object
from the right side of the environment to a stool in front
of the robot, while respecting the end-effector orientation

constraint. Environment 2, shown in Figure 3, asks for the
right arm to move a small board from the left side to the
right side of a pole, while maintaining the visibility cone
constraint with respect to the head stereo camera of the PR2.
Environment 3, shown in Figure 4, asks for the robot to use
both its arms to move a tray from the robot’s left side to its
right side, so it can be placed on the table in front of the
robot, while maintaining the dual arm constraint.

Fig. 3. PR2 operating among obstacles, maintaining visibility from head
stereo camera to a grasped object. Left: Start configuration. Right: Goal
configuration.

For each of the environments, 10 different approaches
were tested: (1) A baseline approach where an Approx-
imation Graph was not used but specialized algorithms
were used for sampling the constraint manifold, and (2) 9
approaches where approximations of the constraint manifold
were employed. We used Approximation Graphs with 1000,
5000 and 10000 configurations and with 0, 20 or 100 edges
per configuration. Note that a different Approximation Graph
needs to be created for each type of constraint, but the
same Approximation Graph can be used across different
environments as long as the constraint stays the same. For
each experiment, all values were averaged over 100 planner
executions. Experiments 1 and 2 have a time limit of 15 s
per planner execution, and Experiment 3 has a time limit of
300 s per planner execution. The machine we used had an
Intel i7-2600 CPU (3.4Ghz) and 16 GB RAM. All planners
are single threaded, but the database computation is multi-
threaded (8 threads).

Fig. 4. PR2 operating among obstacles, keeping roll and pitch fixed
for both arms while grasping a tray. Left: Start configuration. Right: Goal
configuration.

C. Experimental Results
The results from the experiments are shown in Table I

for Environment 1, Table II for Environment 2 and Table III
for Environment 3. The first column in each table indicates



TABLE I
“AVERAGE TIME (S)” / “SUCCESS RATE” IN ENVIRONMENT 1.

RRTConnect LBKPIECE SBL RRT KPIECE

no approx. 1.70 / 100% 3.98 / 100% 2.86 / 100% 3.02 / 94% 4.03 / 86%
1000/0 0.99 / 99% 0.55 / 100% 0.68 / 100% 0.90 / 84% 2.29 / 96%
1000/20 0.96 / 100% 0.49 / 100% 0.62 / 100% 1.10 / 100% 2.23 / 99%
1000/100 1.01 / 93% 0.51 / 100% 0.67 / 100% 0.89 / 91% 2.43 / 98%
5000/0 0.71 / 100% 0.57 / 100% 0.69 / 100% 1.14 / 93% 2.43 / 99%
5000/20 0.93 / 100% 0.54 / 100% 0.63 / 100% 1.33 / 82% 2.96 / 94%
5000/100 0.55 / 100% 0.55 / 100% 0.66 / 100% 1.05 / 100% 2.64 / 91%
10000/0 0.70 / 100% 0.54 / 100% 0.67 / 100% 1.28 / 85% 3.41 / 90%
10000/20 0.66 / 100% 0.59 / 100% 0.67 / 100% 1.12 / 91% 3.00 / 93%
10000/100 0.83 / 100% 0.58 / 100% 0.65 / 100% 1.19 / 92% 2.52 / 94%

the size of the Approximation Graph: “nr. configurations
/ nr. edges per configuration”. Subsequent columns show
the “average runtime (seconds) / success rate”. The time
per thread taken for offline generation of the Approximation
Graphs using 8 threads, as well as the size (in MB) of the
resulting data structure are shown in Table IV.

As we can see from Tables I, II and III, the runtimes shown
in the top rows (corresponding to the baseline approach for
planning without using the Approximation Graph) are much
higher than the runtimes shown in subsequent rows (corre-
sponding to the use of Approximation Graphs of different
sizes). One exception is for the KPIECE planner operating
in Environment 2. The fact that samples with a higher chance
of being valid are sampled leads to overall faster execution
for the cases where the Approximation Graph was employed.

The one exception for KPIECE happens when using the
visibility constraint, which does not reduce the dimension-
ality of the configuration space. The exploration strategy
KPIECE employs performs better when not limited by the
number of configurations in the Approximation Graph. The
behaviour of KPIECE with the Approximation Graph could
possibly be improved with some parameter tuning, but we
made no attempt to tune the parameters of any of the planners
– automatic settings provided by OMPL were used.

The RRT and RRTConnect algorithms do not use sampling
in the vicinity of configurations, so their runtime when using
the Approximating Graphs does not vary when different
numbers of edges are used. The other algorithms, however,
do use this functionality. It is still difficult to see the benefits
of using edges in the Approximation Graphs, since the use
of Approximation Graphs without edges already makes the
problems much easier to solve. For the first two environ-
ments, the probability that a motion segment will respect task
constraints, given that its endpoints respect the constraints,
is relatively high, due to the choice of local planner. For
Environment 3 we see a clear improvement when using
edges in the Approximation Graph for the planners that use
lazy collision checking (SBL and LBKPIECE). This is to
be expected since including the edges in the Approximation
Graph leads to a higher density of valid motions in the data
structures constructed by lazy planners.

The significant difference in execution time between
planning with and without and Approximation Graph for
experiment 3 (over two orders of magnitude) is consistent
with the difference in sampling speed: generating samples
for experiment 3 can be done at a rate of approximately

TABLE II
“AVERAGE TIME (S)” / “SUCCESS RATE” IN ENVIRONMENT 2.

RRTConnect LBKPIECE SBL RRT KPIECE

no approx. 0.95 / 100% 3.90 / 100% 2.47 / 100% 4.71 / 100% 0.45 / 100%
1000/0 0.36 / 100% 0.59 / 100% 1.01 / 100% 0.42 / 100% 3.46 / 88%
1000/20 0.41 / 100% 0.89 / 100% 1.42 / 100% 0.49 / 100% 2.29 / 91%
1000/100 0.31 / 100% 0.84 / 100% 1.32 / 100% 0.37 / 100% 3.16 / 92%
5000/0 0.31 / 100% 0.76 / 100% 1.17 / 100% 0.38 / 100% 3.01 / 91%
5000/20 0.29 / 100% 0.89 / 100% 1.36 / 100% 0.37 / 100% 4.08 / 89%
5000/100 0.32 / 100% 0.99 / 100% 1.35 / 100% 0.44 / 100% 4.03 / 66%
10000/0 0.33 / 100% 0.78 / 100% 1.25 / 100% 0.43 / 100% 5.27 / 66%
10000/20 0.29 / 100% 0.99 / 100% 1.20 / 100% 0.44 / 100% 4.13 / 70%
10000/100 0.37 / 100% 0.95 / 100% 1.25 / 100% 0.43 / 100% 3.75 / 84%

TABLE III
“AVERAGE TIME (S)” / “SUCCESS RATE” IN ENVIRONMENT 3.

RRTConnect LBKPIECE SBL RRT KPIECE

no approx. 156.9 / 100% N/A / 0% 211.7 / 15% 182.9 / 90% 76.1 / 100%
1000/0 0.26 / 100% 1.00 / 100% 2.22 / 100% 0.43 / 100% 0.62 / 100%
1000/20 0.21 / 100% 0.40 / 100% 0.76 / 100% 0.41 / 100% 1.22 / 100%
1000/100 0.39 / 100% 0.51 / 100% 0.80 / 100% 0.67 / 100% 1.25 / 100%
5000/0 0.27 / 100% 1.29 / 100% 2.96 / 100% 0.45 / 100% 0.60 / 100%
5000/20 0.27 / 100% 0.51 / 100% 0.79 / 100% 0.48 / 100% 0.78 / 100%
5000/100 0.28 / 100% 0.45 / 100% 0.68 / 100% 0.61 / 100% 0.74 / 100%
10000/0 0.24 / 100% 1.49 / 100% 3.29 / 100% 0.54 / 100% 0.76 / 100%
10000/20 0.25 / 100% 0.52 / 100% 0.89 / 100% 0.49 / 100% 0.77 / 100%
10000/100 0.27 / 100% 0.39 / 100% 0.72 / 100% 0.47 / 100% 0.67 / 100%

300 samples per second while just copying samples from the
Approximation Graph can be done at over 70000 samples per
second. The reduced success rate of SBL and LBKPIECE is
also expected because these planners typically generate many
more samples than non-lazy algorithms.

To test the performance when constraint parameters vary,
we performed additional experiments for Environment 3,
with objects of different sizes. In this case, the constraint
is parameterized by a single parameter (d): the distance
between the wrists of the end-effectors. This parameter
can be adjusted for grasping objects of different sizes. We
generated an Approximation Graph of 105 configurations
and 0 edges, allowing this distance to vary, resulting in a
22.9 MB data structure computed in 35.26 seconds (runtimes
are lower than those in Table IV because the enforced
constraint is simpler). We did not include edges in this
Approximation Graph because the required number of edges
per configuration would have to be fairly large to be useful.

We ran tests for desired values of d between 0.6m to
0.9m, at increments of 0.1m (shown in Table V). For each
desired value of d, a tolerance of 5mm was allowed. Since
the configurations in the Approximation Graph were already

TABLE IV
COMPUTATIONAL RESOURCES FOR APPROXIMATION GRAPH

COMPUTATION USING 8 THREADS.

Approximation Environment 1 Environment 2 Environment 3
graph time (s) MB time (s) MB time (s) MB

1000/0 0.4 0.1 0.3 0.1 6.5 0.2
1000/20 0.5 0.3 1.0 0.2 10.3 0.4
1000/100 1.3 0.8 3.5 0.8 15.3 0.7
5000/0 0.9 0.6 1.1 0.3 31.0 1.1
5000/20 1.9 1.4 4.5 1.1 62.4 1.9
5000/100 5.7 4.4 17.7 4.1 126.2 4.4
10000/0 1.7 1.2 2.1 0.7 59.6 2.3
10000/20 3.7 2.8 9.0 2.2 134.5 3.9
10000/100 11.4 8.8 35.6 8.3 309.7 9.3



TABLE V
DIFFERENT CONSTRAINT PARAMETERS FOR THE DUAL ARM

CONSTRAINT USING A SORTED APPROXIMATION GRAPH.

d ns RRTConnect LBKPIECE SBL RRT KPIECE

0.6 2162 0.25 / 100% 0.70 / 100% 1.32 / 100% 0.90 / 100% 0.86 / 100%
0.7 1731 0.32 / 100% 1.46 / 100% 2.92 / 100% 0.68 / 100% 0.88 / 100%
0.8 1475 0.52 / 100% 1.71 / 100% 3.49 / 100% 0.80 / 97% 1.81 / 99%
0.9 1351 0.51 / 100% 2.17 / 100% 5.96 / 100% 0.87 / 95% 4.33 / 95%

sorted in accordance to the distance between wrists, it is
easy to identify the range of configurations that can be used
for this constraint with a particular offset between the end-
effectors. Table V shows the distance between the wrists of
the end-effectors (column d), the number of configurations in
the allowed range around the desired value of d (column ns)
and the averaged runtimes and success rates for the evaluated
planners. We notice that success rates are maintained high
(always 100% for bi-directional planners) and runtimes are
still very small, thus suggesting that parameterization of
constraints with a few parameters is feasible.

D. Discussion
The results in the previous section show that our approach

can provide significant benefits for motion planning with task
constraints. It also shows that our approach would be feasible
for use with constraints that are parameterized by a few
parameters. For parameterized constraints like the dual-arm
constraint, the scalability of our approach could be improved
by associating Approximation Graphs directly to an object.
This is a natural step since grasp databases are already used
to store possible grasps for different objects. Thus, it makes
sense to also associate a small Approximation Graph for each
object in the grasp database. Furthermore, it is likely that the
benefits of including valid edges in the Approximation Graph
would be more apparent if the local planners used did not
tend to satisfy the planning constraints (as was the case for
our experiments).

The approach we introduce in this work relies on the
discretization of continuous spaces. As such, probabilisti-
cally complete motion planners that plan using the space
representation we discuss in this work will no longer be
probabilistically complete, but this caveat can be removed if
the procedure described in Section III-E is also implemented.

V. CONCLUSIONS

Using offline computed approximations of constraint man-
ifolds is useful for sampling-based motion planning because
the sampling speed can be increased by as much as two
orders of magnitude and the probability of sampling valid
configurations is significantly higher. Furthermore, our ap-
proach does not require changing existing motion planners
and can use any of the previously existing techniques for
generating samples on the constraint manifold. In future
work, we intend to explore the application of our approach to
more constraints including torque constraints and constraints
arising from human-robot interaction.
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